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Reaction-diffusion models describing a two-lane traffic flow
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A unidirectional two-lane road is approximated by a set of two parallel closed one-dimensional chains. Two
types of cars, i.e., slow and fast ones are considered in the system. Based on the Nagel-Schreckenberg model
of traffic flow [K. Nagel and M. Schreckenberg, J. Ph2s2221(1992], a set of reaction-diffusion processes
is introduced to simulate the behavior of the cars. Fast cars can pass the slow ones using the passing lane. We
write and solve the mean-field rate equations for the density of slow and fast cars, respectively. We also
investigate the properties of the model through computer simulations and obtain the fundamental diagrams. A
comparison between our results and the,,=2 version of the Nagel-Schreckenberg model is made.

PACS numbgs): 02.50.Ey, 05.70.Ln, 05.70.Fh, 82.20.Mj

I. INTRODUCTION NS based models, there are few analytical approaches to
multilane traffic flow[21]. One main reason is the large
In recent years, modeling traffic flow has been the subjecaumber of rules in PCA modeling of multilane traffic. In
of comprehensive studies by statistical physicifts-5].  reality, a driver attempting to overtake the car ah¢ada
Needless to say, many general phenomena in vehicular trainidirectional roagl has to take the following criteria into
fic can be explained in general terms with these modelsSonsideration.
Distinct traffic states have been identified and some of these (1) There must be enough forward space in the passing
models have found empirical applications in real trafficlane.
[2-4]. In these investigations, various theoretical ap- (2) There must be enough backward space in the passing

proaches, namely, microscopic car-following modgs7], ~ lane so that no accident could occur between two simulta-
hydrodynamical coarse-grained macroscopic mofig,9, ~ neously passing cars. - o
and gas-kinetic modelgL0,11], have been developed in or- ~ Moreover, in bidirectional roads, additional criteria are

der to find a better quantitative as well as qualitative undernecessary for a successful passifug details se¢18]). The
standing toward vehicular traffic phenomena. Recently, as afain purpose of the present paper is to introduce an analyti-
alternative microscopic description, probabilistic cellular au-c@l approach to study a unidirectional two-lane road. The
tomata (PCA) have come into playfor an overview, see approach we use is to some extent similar to PCA, however,
Refs.[12,13). This approach to theoretical description of basic differences are distinguishable. The major distinction is
traffic flow is one of the most effective and well-establishedconcerned with the type of updating scheme. In contrast to

ones and there is a relatively rich amount of results, botf®CA, which are realized in parallel update, our models are
numeric and analytic, in the literatufe,14]. based on time-continuous random sequential update. The

In PCA mode's' Space‘oad’ time, and velocities of ve- mechanism of m0de|ing the two-lane traffic we use is based

hicles are assumed to take discrete values. This realization &0 the stochastic reaction-diffusion processes, however, the
traffic flow makes PCA an ideal tool for the computer simu-Tfules have roots in the NS rules. This paper is organized as
lation. One of the prototype PCA models is the so-calledfollows: In Sec. II, we define the first mod@hodel ) and
Nagel-Schreckenber¢\NS) model [15], which describes a interpret the rules in terms of those in the NS model. Section
single-lane traffic flow. Although the initial observations of !l starts with the Hamiltonian description of the related mas-
the NS model were numerical, shortly thereafter, analyticaler equation and continues with mean-field rate equations
techniques were also proposéti2—14. Analytical treat- and their solutions. The results of the numerical simulation
ments to CA are difficult in general. This is mainly due to the Of model I ends this section. Next, we introduce the model Il
discreteness and the use of para(@nchronou)supdating in Sec. IV, which is formulated in SymmetrIC as well as
procedures that produce the largest correlation among tr@symmetric versions and follow the same steps performed in
vehicles with regard to other updating schemes. Soon afte$ec. Il to obtain the fundamental diagrams of the both ver-
its introduction, the NS model was extended to account fogions. The paper ends with some concluding remarks in
more realistic situations such as multilane traffic flow Sec. V.
[16,17], bidirectional road$18], and urban traffi¢19,20. In
multilane traffic, fast cars are capable of passing the slow
ones by using the fast lane. The possibility of lane changing
allows for these models to exhibit nontrivial and interesting In the first model, a unidirectional two-lane road is ap-
properties that are exclusive to multilane traffic flow. Despiteproximated by a set of two parallel one-dimensional chains,
the quite large approximative methods applied to single-laneach withN sites. The periodic boundary condition applies to
both. Cars are considered as particles that occupy sites of the
chains. Two types of cars exist in the system: slow cars,
*Email address: foolad@theory.ipm.ac.ir which are denoted b#, and fast cars, denoted By Also, ®

Il. DEFINITIONS OF THE MODELS
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represents an empty site. Each site of the chains is eithgrassing lane, i.e., there is no passing car close to him in the

empty, occupied by a slow or by a fast car. passing lang¢16,17. In model |, passing occurs locally and
Fast cars can pass the slow ones with certain probabilitiesrespective of the state of passing lane behind the fast car in

while approaching them. The bottom lane is the home lan¢he home lane.

and cars are only allowed to use the top lane for passing.

Once the passing process is achieved, they should return to || MASTER EQUATION AND MEAN-FIELD RATE

the home lane. This realization of a two-lane road is regarded EQUATIONS

as “asymmetric” type. Nonetheless ‘“symmetric” type

could also be implemented where passing from the right is The processed)—(6) could be regarded as a two-species,

allowed as well. In model |, we restrict ourselves to “asym- one-dimensional reaction-diffusion stochastic process. This

metric” type. The state of the system is characterized by twdS an example of hardcore driven lattice gas far from equi-

sets of occupation numbers &(&,, ...,&) and librium that has proven to be an excellent system for theo-

(01,04, ...,0n) for the home and passing lane, respec-retical investigations of low-dimensional systems out of ther-

tively. & ,0,=0,1,2, where zero refers to an empty siteMal equilibrium. A large variety of phenomena had already

whereas one and two refer to a site being occupied by a sloReen described by driven lattice gasésr an overview see
or a fast car, respectively. [22—24 and the references thergitsing the rates given by

To investigate the characteristics of this model, a simpli-Eds-(1)—(6), one can rewrite the corresponding master equa-
fication has been considered. If simultaneous two-car occdion as a Schrdinger-like equation in imaginary time,
pation of parallel sites of the chains is forbidden, one can P
describe configurations with a single set of occupation hum- —|p(t)y=—"H|p(t)). (7)
bers{r;}, wherer;=0,1,2. o
Inspired by they .= 2 version of the NS mod¢ll5,12,

we propose the following set of stochastic processes thaé The explicit form of H could be written down via the rate
evolve according to a random sequential updating scheme; quations. Letnia)((Nizg)) denote the probability that at

timet, the siteN=k of the chain is occupied by a slotfas?

AD DA (with rate h), (1) ~ car. The Hamiltonian formulation of the master equation al-
lows for evaluating the average quantities in a well-

Bd—®B (with rate p), (2)  established manner. It could be easily verified that the fol-
lowing rate equations hold for the average occupation

AP —®B (withrate q), (3)  probabilities:

. d
BO—®A (withrate r), 4) a<nk,A>:h<nk—1,Aek>+r<nk—1,Bek>+)\<nk,Bnk+1,A>
BA—AA (with rate A), © —h{n a€k+1) = ANk ACK+1)- (8)
BA®—®AB (withrate s). (6) In the above equatiom, stands for n, o—ny g. Simi-

In order to illustrate the above definitions, let us express theilrarly’ for (ny g), we have

interpretations. d
The first and the second of the above rules correspond to&(nk,&:qmw 1A8k) + P(N—1864) T S(Nk—2,8Nk—146k)
the free moving of slow and fast cars, respectively. The third

one expresses the accelerated movement of slow cars. This —r{Ng g€k+1) — P{Nk gCk+1) — ANk BNK+1.A)
step corresponds to the so-called acceleration step in the NS
model. The fourth rule simulates the behavior of a driver = S(Nk BN+ 148+ 2) ©)

randomly reducing his/her speed as a result of environment%l\ :
effects, road conditions, etc. This step corresponds to thepparently, the total number of neither slow nor fast cars are

so-called “random breaking” step in the NS model. Finally, conserved according to the dynamics and therefore the right-

the last two processes simulate the behavior of the fast-czﬂand sides of Eqg8) and (9) cannot be written as a differ-

drivers when approaching a slow car. Either they pass th&nce of two currents. However, the total number of cars, i.e.,

slow car using the passing lane or they prefer to move behin € sum Offlor:N an_d fast cars, is a ponservled qu;t_r;ftlty and the
it, which give rises to their speed reduction. tl)me rate of ¢ ang'ngng'k>+<n.51k> Is equal to a difference
We recall that in the NS model, the forward movement of etween oncoming an ou.tgom_g currents. Summing up Egs.
each car is highly affected by the car ahead. Here, for sim.£8) and(Q) y|.elds the following discrete form of the continu-
plicity, we have considered the two-site interactions and onl)}ty equation:

use three-site interaction for the passing process. In this par- d .

ticular case, it is crucial that the site ahead of the slow car &[(nk,A>+<nk,B>]:<‘]Ln>_<JEUI>1 (10)
should be empty. Despite the partial explanation of micro-

scopic rules necessary for the description of a traffic flow iny, \\hich the explicit form of(J2"Y is given below:
a two-lane road, the present model ignores the effect of on-

coming fast cargin the passing laneon the fast cafin the JOUY — 1ip. ae +rlm we +a(Ne A€
home lang In reality, a fast car attempts to overtake pro- () =Nk 1) F 1 (Nkp@icr) + AN ABK: 1)
vided that there is enough back-space behind him in the + p(Nk gek+1) T S(Nk BNk+1AEK+2) - (11
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FIG. 1. Cur_rent-densny Q|agram for different valyesroa&s S?t FIG. 2. Current-density diagrams for different valuessof is
to 0.4. The unit of current is number of cars passing each site per

o Set to 0.2. The current unit is the same as in Fig 1.
unit time of update.

. . . . The solution with the minus sign is unphysical,<0) so
Equations(8), (9), and (11) are valid for arbitrary timet; the unique solution is the one? with th?e >p/>ositi\/;eKsi)gn. We

howev_er, our particular interest is TOCUS_Ed on the ang'timeremark that within the mean-field approach, one also can
behavior of the system where stationarity is established. "golve the time-dependent version of E(@) and'(9) In this
the steady-state regime, one- and two-point correlators i@ase the equation fdn,) turns out to be. '

L A

Egs. (8) and (9) will be time independent. EquatiofiL0)

implies that in steady state the current would be site inde-g

pendent as expected. gi{nay=rn(1=n)=[(@+r)(1-n)—nAKna) - N(na))?,
So far, our results have been exact and no approximation (16)

has been implemented. At this stage and in order to solve Eq.

(8)—(11) we resort to a mean-field approximation and replacevhich simply give rises to the following solution:

the two-point correlators with the product of one-point corr-

elators. Moreover, since the closed boundary condition has ny—C,ec2Cs™

been applied, it can be anticipated that the steady values of (na)(t)= m 17)

(nk.a)s @and(ny g)s be site independent and therefore we omit €

the site-dependence subscripts from E&s-(11). Denoting iy \which C,, C,, and C, are constants depending on the
the steady values dna)s and(ng)s by na andng, respec-  rates. In the long-time limit, the mean concentration of slow

tively, the steady current turns out to be cars exponentially relaxes toward the steady vaiwe Re-
J=(hna+rng+qna+png+snng)(1—n). (12 1
In the above expression, the total density of the cars has 09 — m: :fg-g
been taken to be, 0.8 n Sin;ulation, r=0.2 /
° Simulation, r=0.5 ‘//'/
Nna+Ng=n. 13 — — — - Na-Sch, p=0.2 s
AT (13 g 0.7 ————- Na-Sch, p=0.5 a4l
Our final aim is to writed in terms of total densityr and the g 06
rates. This is performed if one writes, as a functiom and % s
the rates. By applying the mean-field approximation to Eq. ©
(9) in its steady-state form, and using E@3), one obtains ? 0.4
the following equation: S
Q 03
r(n=np)(I-=n)+Nn=nana=qna(1-n), (14 02
which simply yields the solutions 0.1
0 M |
1 0 0.25 0.5 0.75 1

(M= (1=n)(g+r)={[n\—(1-n)(q+n)]?

NA=oN Total density n

+4rn(1—n)A}?). (15 FIG. 3. Density of slow cars versus the total densityser 0.4.
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the system was prepared randomly, i.e., each site is occupied
o.zt— - Simulation, slow, n=0.2, s=0.4 Wlth. the probapmtyn. Figures 1-6 show the result of nu-
B A Simulation, fast, n=0.2, s=0.4 merical simulations.
- A IV. MODEL Il
0 0.15 - A N — A. Asymmetric regulation
s - A gunt . The second model we consider has less resemblance to
S [ A n® the NS model. Here, there is no specification of fast and slow
° 5 ] p
£ o1l A" cars and only one kind of particle exists in the chain; never-
% - - oA, A theless the distinction between fast and slow cars is realized
a i m A A, by their appearance in the passing and home lanes. In this
i | Aa, AA, periodic double-chain model, the following processes occur
005 m in a random sequential updating scheme:
. =
o o O o O
0 L TR R N N T N I TN T N T [T T N NN MO SO R M | .
s 0.1 0.2 0.3 0.4 0.5 — with rate h
r e O o e
FIG. 4. Density of slow(fast) cars as a function af. The value
of nands are 0.2 and 0.4, respectively.
o O o e

placing the aboven, into Eg. (13), one now has the total
currentJ as a function ofn and the rates. In order to have
better insights into the problem, extended computer simula-
tions were carried out. Here we present the result of numeri-
cal investigations of model I. In these computer simulations,
the system size is typically 2400. With no loss of generality,
we rescale the time so that the rate of hopping a fast car is set
to one. The speed of slow cars is supposed to be 70% of the
speed of the fast cars, which is realized by takingO0.7.

The values ofg and\ are set 1 and 0.7, respectively. One
subupdatestep consists of a random selection of a site, say,
N=i, and developing the state of the linki(+ 1) according

to the dynamics. Onepdatestep containg subupdatesThe
typical number of updates developed in order that the system
reaches stationarity is 400000 and the averaging has been
performed over 500 000 updating steps. The initial state of

with rate a

o e
o o0
with rate ¢
o o
o e
with rate b
° o

Time

Space

FIG. 5. Space-time diagram for=0.2 ands=0.0. The unit of
time is one update.

As depicted, thasymmetriaegulation has been adopted
so that the top lane can only be used for passing. According
to the above rules, once a successful passing has taken place,
the passing car should return to its home lane unless the next
site in the home lane is already occupied. In this circum-
stance, it can continue to pass the second slow(raitti-
passing. Each site of the double chain takes four different
states, but according to the above dynamics only three of
them appear in the course of time. The forbidden state is the
one in which the passing-lane site is full and its parallel
home-lane site is empty. Regarding this fact, we characterize
the three allowed states b§,A, and B. ® represents the
situation where both parallel sites are emp@tyepresents the
case of an occupied site in the home-lane and an empty par-
allel site in the passing lane, and finalB refers to the case
of both parallel sites being occupied.

This notation yields the following reaction-diffusion pro-
cesses:

AD—-DA (withrate h), (18
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FIG. 6. Space-time diagram for=0.2 ands=0.7. The unit of FIG. 7. Current-density diagram for different values of passing
time is one update. rates. The current unit is the same as in Fig. 1.
AA—®B (withrate a), (19 d
_ anAZZgnB(l—n)—Zani. (25)
B®—AA (withrate g), (20
BA—AB (withrate b). (21 The unique physical solution of the above equation is

It is worth mentioning that the above model for a two-lane 1
road is simultaneously being considered within the approach , _ ~ 201—=n)2+16an(1—n 12_4(1—n
of deterministic cellular automaf25]. A" 4a (g ) ( ol ol )

(26)
B. Master equation and mean-field approach

Similar to the steps performed in model I, one can write, Putting Eq.(26) in Eq. (24), the current is now obtained

the following form of discrete-continuity equation: in terms ofn and the rates. The result of computer simula-
tions are shown in Figs. 7—9. Here the ralteg, andh are

d " out chosen to be 1.0, 1.0, and 0.7, respectively, waile varied.
gil(Mea) +2(nie) 1= (I = (3™ (22)  we recall thata measures the tendency of fast cars to pass
the slow ones. The simulation specifications are the same as
in which those in model 1.
(I")=h(ny A€ 1) + BNy BNk 1) +I(Nic €Y+ 1) osk PRt ~
6 e .
+a(n ANk 1.4)- (23 - A AN
0 - V4 .
. . . . = 4 A
The above expression fdd,) has a clear interpretation in % 0SF / e \
terms of rules(18)—(21). In steady state, the time depen- k> [ st . \
dences in the equation disappear and the current will be site’g. 04 /.{ - \
independent. Next, we apply the mean-field approximation § i £ ettt .e, - ‘-\
through which all the two-point correlators are replaced by g K ,i/ . * . i
the product of one-point correlators. This leads to the follow- _gv 03 / . e " i
ing equation forJ: B i / *. 1
© 0.2 [ ./ o !
Na Na g F 4 ———— MF, a=0.3 !
J:hnA(ln)+b(n2) nA+g(n2)(1n)+an§, 2 C . Simulation, a=0.3 °. \
a - . Simulation, a=0.7
(24) 01F MF, a=0.7 .
where the relatiom,/2+ng=n has been used. [/ | | |
In order to obtain in terms of total densityr and the L Ty
rates, we must write, as a function oh and the rates. This Total density n

is done by solving the following equation with its left-hand
side set to zero. FIG. 8. Density of singly occupied sites versus the total density.
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FIG. 9. Density of doubly occupied sites versus the total den- FIG. 10. Current per lane-density diagram for different values of
sity. passing rates.
C. Symmetric regulation allel sites byC and adopting the notatior and A as the

Here we allow the fast cars to pass rightward as well. [nS@me in the asymmetric version of the model, then it could
this case, both the top and bottom lanes become identical arf@sily be verified that the forms of the discrete-continuity
fast cars can pass the slow ones irrespective of their honféduation and the current one are as follows:
lane. In thissymmetrictwo-lane model, each particle hops q
one site ahead in its home lane, provided that the next site is el _ _
empty. Otherwise it tries to pass the car ahead. This attempt dt(<ak>+<bk>+2<ck>) -0~ @7
is successful if there is an empty site ahead on the opposite
lane. The following rules illustrates the model definition: ~ and

* o * o (Jikr 1) =h((aeyr 1) + (kb 1) +2(cyer 1) +(Cibyr1)
— with rate A + (bt 1) T (b 1)+ (i@ 1)) +9((bybis 1)
*° ° ¢ +(akay+1)), (29)

where(ay), (by), and{c,) refer to the probabilities that at

LI o e time t, the siteN=k of the double chain has one car in the
— with rate A
0.3 N
* %k * ok - ————
- ,’ \c
2 ozsf
= B Ps \
* o o e .g N a \
2 - 4 \
— with rate g¢ 2 0.2~ // . \
3 [ A g0 : " . \-
o o o e o B A : ® . o " \
2 015 /e . \
£ i A o \
» B ’ PY \
o o o e ] 01k :
, F- N
— with rate g & i — MF,g=03
g - —— MF, g=0.3 [ ]
* o e 0.05- . Simulation, g=0.3
[ ° Simulation, g=0.7 b
The asterisk symbols indicate that the process in the opposite oL
; . : ; 0 0.25 0.5 0.75 7
lane occurs independently of the configuration of the sites .
Total density n

filled with an asterisk. If we denote the state of two parallel _ . . .
sites in which the bottom site is empty and the top one is | FIG. 11. Density of singly occupied sites versus the total den-
occupied byB, the state of simultaneous occupation of par-Sity-
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FIG. 12. Density of doubly occupied sites versus the total den- " FIG. 13. Number of lane-changing per update versus total den-
sity

Sity.

sounds more appropriate for analytical treatments. In the first

.model, the results of numeric simulations are very close to

bottom lane, one car in the top lane, and double occupancy hose in the mean-field approach, which indicates that the

both lanes, respectively. In the steady state, the system gffects of correlations are suppressed. However, in the sec-

both time and site independent. Denoting the steady values . -
of (a), (by), and(c,) by a, b, andc, one has the relation ond model, there are remarkable differences between analyti

cal and numeric results. In model I, the current-density dia-
a+b gram is slightly affected by changing the passing rate and the
— +c=n. (29 passing process has most effect in the intermediate densities.
This could be anticipated since in the low and high densities,
Moreover, the symmetry between the lanes implies that (1€ number of passing considerably reduces. The space-time
=b. The steady valua is easily found to be obtained from diagrams of the model | reveal the discriminating effect of

: . passing.
the following equation: In model Il (both symmetric and asymmetriche maxi-
(g+h)a?=hc(1—n). (30)  mum ofJ occurs in different values af in simulation and in
the analytical approach. The mean field predicts a shift to-
Solving the steady-state equation torone finds ward higher densities, while in simulation a slight shift to-
2 2 12 ward the left is observed. We note that in the PCA-based
A {{h*(1—n)*+4hn(1-n)(g+h)]}**—h(1 n)- models, the maximum of corresponds to a considerable
2(g+h) (31) left-shifted value of the densit}16,17. In the symmetric

version of the model Il, we observe an increment of the

Also, Eq.(31) leads to the following equation fak current with regard to the asymmetric version. In contrast to
the asymmetric version, the maximum bin the mean-field

J=2[hn(1-n)+h{a?+2a(n—a)}+ga?], (32 approach is higher than its value obtained through simula-
tion. Although the current diagraitiO) appears asymmetri-

where, by putting E(31) into it, one reaches the expression cally with respect to the density, the lane-changing diagram
for Jin terms ofn, g, andh. We remark that the factor 2 (13) is symmetric to a high accuracy.

reflects the number of lanes. The result of computer simula-
tions are shown in Figs. 10—13 The valuehois set to one ACKNOWLEDGMENTS
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