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Reaction-diffusion models describing a two-lane traffic flow

M. Ebrahim Fouladvand*
Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran, Iran

and Institute for Studies in Theoretical Physics and Mathematics, P.O. Box 19395-5531, Tehran, Iran
~Received 24 March 2000!

A unidirectional two-lane road is approximated by a set of two parallel closed one-dimensional chains. Two
types of cars, i.e., slow and fast ones are considered in the system. Based on the Nagel-Schreckenberg model
of traffic flow @K. Nagel and M. Schreckenberg, J. Phys.2, 2221~1992!#, a set of reaction-diffusion processes
is introduced to simulate the behavior of the cars. Fast cars can pass the slow ones using the passing lane. We
write and solve the mean-field rate equations for the density of slow and fast cars, respectively. We also
investigate the properties of the model through computer simulations and obtain the fundamental diagrams. A
comparison between our results and thevmax52 version of the Nagel-Schreckenberg model is made.

PACS number~s!: 02.50.Ey, 05.70.Ln, 05.70.Fh, 82.20.Mj
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I. INTRODUCTION

In recent years, modeling traffic flow has been the sub
of comprehensive studies by statistical physicists@1–5#.
Needless to say, many general phenomena in vehicular
fic can be explained in general terms with these mod
Distinct traffic states have been identified and some of th
models have found empirical applications in real traf
@2–4#. In these investigations, various theoretical a
proaches, namely, microscopic car-following models@6,7#,
hydrodynamical coarse-grained macroscopic models@5,8,9#,
and gas-kinetic models@10,11#, have been developed in o
der to find a better quantitative as well as qualitative und
standing toward vehicular traffic phenomena. Recently, a
alternative microscopic description, probabilistic cellular a
tomata ~PCA! have come into play~for an overview, see
Refs. @12,13#!. This approach to theoretical description
traffic flow is one of the most effective and well-establish
ones and there is a relatively rich amount of results, b
numeric and analytic, in the literature@1,14#.

In PCA models, space~road!, time, and velocities of ve-
hicles are assumed to take discrete values. This realizatio
traffic flow makes PCA an ideal tool for the computer sim
lation. One of the prototype PCA models is the so-cal
Nagel-Schreckenberg~NS! model @15#, which describes a
single-lane traffic flow. Although the initial observations
the NS model were numerical, shortly thereafter, analyt
techniques were also proposed@12–14#. Analytical treat-
ments to CA are difficult in general. This is mainly due to t
discreteness and the use of parallel~synchronous! updating
procedures that produce the largest correlation among
vehicles with regard to other updating schemes. Soon a
its introduction, the NS model was extended to account
more realistic situations such as multilane traffic flo
@16,17#, bidirectional roads@18#, and urban traffic@19,20#. In
multilane traffic, fast cars are capable of passing the s
ones by using the fast lane. The possibility of lane chang
allows for these models to exhibit nontrivial and interesti
properties that are exclusive to multilane traffic flow. Desp
the quite large approximative methods applied to single-l
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NS based models, there are few analytical approache
multilane traffic flow @21#. One main reason is the larg
number of rules in PCA modeling of multilane traffic. I
reality, a driver attempting to overtake the car ahead~in a
unidirectional road! has to take the following criteria into
consideration.

~1! There must be enough forward space in the pass
lane.

~2! There must be enough backward space in the pas
lane so that no accident could occur between two simu
neously passing cars.

Moreover, in bidirectional roads, additional criteria a
necessary for a successful passing~for details see@18#!. The
main purpose of the present paper is to introduce an ana
cal approach to study a unidirectional two-lane road. T
approach we use is to some extent similar to PCA, howe
basic differences are distinguishable. The major distinctio
concerned with the type of updating scheme. In contras
PCA, which are realized in parallel update, our models
based on time-continuous random sequential update.
mechanism of modeling the two-lane traffic we use is ba
on the stochastic reaction-diffusion processes, however,
rules have roots in the NS rules. This paper is organized
follows: In Sec. II, we define the first model~model I! and
interpret the rules in terms of those in the NS model. Sect
III starts with the Hamiltonian description of the related ma
ter equation and continues with mean-field rate equati
and their solutions. The results of the numerical simulat
of model I ends this section. Next, we introduce the mode
in Sec. IV, which is formulated in symmetric as well a
asymmetric versions and follow the same steps performe
Sec. III to obtain the fundamental diagrams of the both v
sions. The paper ends with some concluding remarks
Sec. V.

II. DEFINITIONS OF THE MODELS

In the first model, a unidirectional two-lane road is a
proximated by a set of two parallel one-dimensional chai
each withN sites. The periodic boundary condition applies
both. Cars are considered as particles that occupy sites o
chains. Two types of cars exist in the system: slow ca
which are denoted byA, and fast cars, denoted byB. Also, F
5940 ©2000 The American Physical Society
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represents an empty site. Each site of the chains is e
empty, occupied by a slow or by a fast car.

Fast cars can pass the slow ones with certain probabil
while approaching them. The bottom lane is the home l
and cars are only allowed to use the top lane for pass
Once the passing process is achieved, they should retu
the home lane. This realization of a two-lane road is regar
as ‘‘asymmetric’’ type. Nonetheless ‘‘symmetric’’ typ
could also be implemented where passing from the righ
allowed as well. In model I, we restrict ourselves to ‘‘asym
metric’’ type. The state of the system is characterized by t
sets of occupation numbers (j1 ,j2 , . . . ,jN) and
(s1 ,s2 , . . . ,sN) for the home and passing lane, respe
tively. j i ,s i50,1,2, where zero refers to an empty s
whereas one and two refer to a site being occupied by a s
or a fast car, respectively.

To investigate the characteristics of this model, a sim
fication has been considered. If simultaneous two-car oc
pation of parallel sites of the chains is forbidden, one c
describe configurations with a single set of occupation nu
bers$t i%, wheret i50,1,2.

Inspired by thevmax52 version of the NS model@15,12#,
we propose the following set of stochastic processes
evolve according to a random sequential updating schem

AF→FA ~with rate h!, ~1!

BF→FB ~with rate p!, ~2!

AF→FB ~with rate q!, ~3!

BF→FA ~with rate r !, ~4!

BA→AA ~with rate l!, ~5!

BAF→FAB ~with rate s!. ~6!

In order to illustrate the above definitions, let us express th
interpretations.

The first and the second of the above rules correspon
the free moving of slow and fast cars, respectively. The th
one expresses the accelerated movement of slow cars.
step corresponds to the so-called acceleration step in the
model. The fourth rule simulates the behavior of a driv
randomly reducing his/her speed as a result of environme
effects, road conditions, etc. This step corresponds to
so-called ‘‘random breaking’’ step in the NS model. Final
the last two processes simulate the behavior of the fast
drivers when approaching a slow car. Either they pass
slow car using the passing lane or they prefer to move beh
it, which give rises to their speed reduction.

We recall that in the NS model, the forward movement
each car is highly affected by the car ahead. Here, for s
plicity, we have considered the two-site interactions and o
use three-site interaction for the passing process. In this
ticular case, it is crucial that the site ahead of the slow
should be empty. Despite the partial explanation of mic
scopic rules necessary for the description of a traffic flow
a two-lane road, the present model ignores the effect of
coming fast cars~in the passing lane! on the fast car~in the
home lane!. In reality, a fast car attempts to overtake pr
vided that there is enough back-space behind him in
er
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passing lane, i.e., there is no passing car close to him in
passing lane@16,17#. In model I, passing occurs locally an
irrespective of the state of passing lane behind the fast ca
the home lane.

III. MASTER EQUATION AND MEAN-FIELD RATE
EQUATIONS

The processes~1!–~6! could be regarded as a two-specie
one-dimensional reaction-diffusion stochastic process. T
is an example of hardcore driven lattice gas far from eq
librium that has proven to be an excellent system for th
retical investigations of low-dimensional systems out of th
mal equilibrium. A large variety of phenomena had alrea
been described by driven lattice gases~for an overview see
@22–24# and the references therein!. Using the rates given by
Eqs.~1!–~6!, one can rewrite the corresponding master eq
tion as a Schro¨dinger-like equation in imaginary time,

]

]t
up~ t !&52Hup~ t !&. ~7!

The explicit form ofH could be written down via the rate
equations. Let̂ nk,A&(^nk,B&) denote the probability that a
time t, the siteN5k of the chain is occupied by a slow~fast!
car. The Hamiltonian formulation of the master equation
lows for evaluating the average quantities in a we
established manner. It could be easily verified that the
lowing rate equations hold for the average occupat
probabilities:

d

dt
^nk,A&5h^nk21,Aek&1r ^nk21,Bek&1l^nk,Bnk11,A&

2h^nk,Aek11&2q^nk,Aek11&. ~8!

In the above equation,ek stands for 12nk,A2nk,B . Simi-
larly, for ^nk,B&, we have

d

dt
^nk,B&5q^nk21,Aek&1p^nk21,Bek&1s^nk22,Bnk21,Aek&

2r ^nk,Bek11&2p^nk,Bek11&2l^nk,Bnk11,A&

2s^nk,Bnk11,Aek12&. ~9!

Apparently, the total number of neither slow nor fast cars
conserved according to the dynamics and therefore the ri
hand sides of Eqs.~8! and ~9! cannot be written as a differ
ence of two currents. However, the total number of cars,
the sum of slow and fast cars, is a conserved quantity and
time rate of changinĝnA,k&1^nB,k& is equal to a difference
between oncoming and outgoing currents. Summing up E
~8! and~9! yields the following discrete form of the continu
ity equation:

d

dt
@^nk,A&1^nk,B&#5^Jk

in&2^Jk
out&, ~10!

in which the explicit form of̂ Jk
out& is given below:

^Jk
out&5h^nk,Aek11&1r ^nk,Bek11&1q^nk,Aek11&

1p^nk,Bek11&1s^nk,Bnk11,Aek12&. ~11!
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Equations~8!, ~9!, and ~11! are valid for arbitrary timet;
however, our particular interest is focused on the long-ti
behavior of the system where stationarity is established
the steady-state regime, one- and two-point correlators
Eqs. ~8! and ~9! will be time independent. Equation~10!
implies that in steady state the current would be site in
pendent as expected.

So far, our results have been exact and no approxima
has been implemented. At this stage and in order to solve
~8!–~11! we resort to a mean-field approximation and repla
the two-point correlators with the product of one-point co
elators. Moreover, since the closed boundary condition
been applied, it can be anticipated that the steady value
^nk,A&s and^nk,B&s be site independent and therefore we om
the site-dependence subscripts from Eqs.~8!–~11!. Denoting
the steady values of̂nA&s and^nB&s by nA andnB , respec-
tively, the steady currentJ turns out to be

J5~hnA1rnB1qnA1pnB1snAnB!~12n!. ~12!

In the above expression, the total density of the cars
been taken to ben,

nA1nB5n. ~13!

Our final aim is to writeJ in terms of total densityn and the
rates. This is performed if one writesnA as a functionn and
the rates. By applying the mean-field approximation to E
~9! in its steady-state form, and using Eq.~13!, one obtains
the following equation:

r ~n2nA!~12n!1l~n2nA!nA5qnA~12n!, ~14!

which simply yields the solutions

nA5
1

2l
„nl2~12n!~q1r !6$@nl2~12n!~q1r !#2

14rn~12n!l%1/2
…. ~15!

FIG. 1. Current-density diagram for different values ofr. s is set
to 0.4. The unit of current is number of cars passing each site
unit time of update.
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The solution with the minus sign is unphysical (nA,0) so
the unique solution is the one with the positive sign. W
remark that within the mean-field approach, one also
solve the time-dependent version of Eqs.~8! and~9!. In this
case, the equation for^nA& turns out to be

d

dt
^nA&5rn~12n!2@~q1r !~12n!2nl#^nA&2l~^nA&!2,

~16!

which simply give rises to the following solution:

^nA&~ t !5
nA2C1eC2(C32t)

12eC2(C32t)
, ~17!

in which C1 , C2, and C3 are constants depending on th
rates. In the long-time limit, the mean concentration of sl
cars exponentially relaxes toward the steady valuenA . Re-

er
FIG. 2. Current-density diagrams for different values ofs. r is

set to 0.2. The current unit is the same as in Fig 1.

FIG. 3. Density of slow cars versus the total density fors 5 0.4.
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placing the abovenA into Eq. ~13!, one now has the tota
currentJ as a function ofn and the rates. In order to hav
better insights into the problem, extended computer sim
tions were carried out. Here we present the result of num
cal investigations of model I. In these computer simulatio
the system size is typically 2400. With no loss of general
we rescale the time so that the rate of hopping a fast car is
to one. The speed of slow cars is supposed to be 70% o
speed of the fast cars, which is realized by takingh50.7.
The values ofq and l are set 1 and 0.7, respectively. On
subupdatestep consists of a random selection of a site, s
N5 i , and developing the state of the link (i ,i 11) according
to the dynamics. Oneupdatestep containsL subupdates. The
typical number of updates developed in order that the sys
reaches stationarity is 400 000 and the averaging has
performed over 500 000 updating steps. The initial state

FIG. 4. Density of slow~fast! cars as a function ofr. The value
of n ands are 0.2 and 0.4, respectively.

FIG. 5. Space-time diagram forr 50.2 ands50.0. The unit of
time is one update.
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the system was prepared randomly, i.e., each site is occu
with the probabilityn. Figures 1–6 show the result of nu
merical simulations.

IV. MODEL II

A. Asymmetric regulation

The second model we consider has less resemblanc
the NS model. Here, there is no specification of fast and s
cars and only one kind of particle exists in the chain; nev
theless the distinction between fast and slow cars is real
by their appearance in the passing and home lanes. In
periodic double-chain model, the following processes oc
in a random sequential updating scheme:

As depicted, theasymmetricregulation has been adopte
so that the top lane can only be used for passing. Accord
to the above rules, once a successful passing has taken p
the passing car should return to its home lane unless the
site in the home lane is already occupied. In this circu
stance, it can continue to pass the second slow car~multi-
passing!. Each site of the double chain takes four differe
states, but according to the above dynamics only three
them appear in the course of time. The forbidden state is
one in which the passing-lane site is full and its para
home-lane site is empty. Regarding this fact, we characte
the three allowed states byF,A, and B. F represents the
situation where both parallel sites are empty,A represents the
case of an occupied site in the home-lane and an empty
allel site in the passing lane, and finally,B refers to the case
of both parallel sites being occupied.

This notation yields the following reaction-diffusion pro
cesses:

AF→FA ~with rate h!, ~18!
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5944 PRE 62M. EBRAHIM FOULADVAND
AA→FB ~with rate a!, ~19!

BF→AA ~with rate g!, ~20!

BA→AB ~with rate b!. ~21!

It is worth mentioning that the above model for a two-la
road is simultaneously being considered within the appro
of deterministic cellular automata@25#.

B. Master equation and mean-field approach

Similar to the steps performed in model I, one can wr
the following form of discrete-continuity equation:

d

dt
@^nk,A&12^nk,B&#5^Jk

in&2^Jk
out& ~22!

in which

^Jk
out&5h^nk,Aek11&1b^nk,Bnk11,A&1g^nk,Bek11&

1a^nk,Ank11,A&. ~23!

The above expression for^Jk& has a clear interpretation i
terms of rules~18!–~21!. In steady state, the time depe
dences in the equation disappear and the current will be
independent. Next, we apply the mean-field approximat
through which all the two-point correlators are replaced
the product of one-point correlators. This leads to the follo
ing equation forJ:

J5hnA~12n!1bS n2
nA

2 DnA1gS n2
nA

2 D ~12n!1anA
2 ,

~24!

where the relationnA/21nB5n has been used.
In order to obtainJ in terms of total densityn and the

rates, we must writenA as a function ofn and the rates. This
is done by solving the following equation with its left-han
side set to zero.

FIG. 6. Space-time diagram forr 50.2 ands50.7. The unit of
time is one update.
h
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d

dt
nA52gnB~12n!22anA

2 . ~25!

The unique physical solution of the above equation is

nA5
1

4a
„$@g2~12n!2116an~12n!g#%1/22g~12n!….

~26!

Putting Eq.~26! in Eq. ~24!, the currentJ is now obtained
in terms ofn and the rates. The result of computer simu
tions are shown in Figs. 7–9. Here the ratesb, g, andh are
chosen to be 1.0, 1.0, and 0.7, respectively, whilea is varied.
We recall thata measures the tendency of fast cars to p
the slow ones. The simulation specifications are the sam
those in model I.

FIG. 7. Current-density diagram for different values of pass
rates. The current unit is the same as in Fig. 1.

FIG. 8. Density of singly occupied sites versus the total dens
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C. Symmetric regulation

Here we allow the fast cars to pass rightward as well.
this case, both the top and bottom lanes become identica
fast cars can pass the slow ones irrespective of their h
lane. In thissymmetrictwo-lane model, each particle hop
one site ahead in its home lane, provided that the next si
empty. Otherwise it tries to pass the car ahead. This atte
is successful if there is an empty site ahead on the oppo
lane. The following rules illustrates the model definition:

The asterisk symbols indicate that the process in the oppo
lane occurs independently of the configuration of the s
filled with an asterisk. If we denote the state of two para
sites in which the bottom site is empty and the top one
occupied byB, the state of simultaneous occupation of p

FIG. 9. Density of doubly occupied sites versus the total d
sity.
n
nd
e

is
pt
ite

ite
s
l
s
-

allel sites byC and adopting the notationsF and A as the
same in the asymmetric version of the model, then it co
easily be verified that the forms of the discrete-continu
equation and the current one are as follows:

d

dt
~^ak&1^bk&12^ck&!5^Jk21&2^Jk& ~27!

and

^Jk,k11&5h~^akek11&1^akbk11&12^ckek11&1^ckbk11&

1^bkek11&1^bkak11&1^ckak11&!1g~^bkbk11&

1^akak11&!, ~28!

where^ak&, ^bk&, and ^ck& refer to the probabilities that a
time t, the siteN5k of the double chain has one car in th

FIG. 10. Current per lane-density diagram for different values
passing rates.

FIG. 11. Density of singly occupied sites versus the total d
sity.

-
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5946 PRE 62M. EBRAHIM FOULADVAND
bottom lane, one car in the top lane, and double occupanc
both lanes, respectively. In the steady state, the syste
both time and site independent. Denoting the steady va
of ^ak&, ^bk&, and^ck& by a, b, andc, one has the relation

a1b

2
1c5n. ~29!

Moreover, the symmetry between the lanes implies thaa
5b. The steady valuea is easily found to be obtained from
the following equation:

~g1h!a25hc~12n!. ~30!

Solving the steady-state equation fora, one finds

a5
$@h2~12n!214hn~12n!~g1h!#%1/22h~12n!

2~g1h!
.

~31!

Also, Eq. ~31! leads to the following equation forJ:

J52@hn~12n!1h$a212a~n2a!%1ga2#, ~32!

where, by putting Eq.~31! into it, one reaches the expressio
for J in terms ofn, g, and h. We remark that the factor 2
reflects the number of lanes. The result of computer sim
tions are shown in Figs. 10–13 The value ofh is set to one
andg is varied.

V. CONCLUDING REMARKS

We have introduced a two-species reaction-diffus
model for description of a unidirectional two-lane road. T
type of update we have used is random sequential, wh

FIG. 12. Density of doubly occupied sites versus the total d
sity.
in
is

es

a-

n

h

sounds more appropriate for analytical treatments. In the
model, the results of numeric simulations are very close
those in the mean-field approach, which indicates that
effects of correlations are suppressed. However, in the
ond model, there are remarkable differences between ana
cal and numeric results. In model I, the current-density d
gram is slightly affected by changing the passing rate and
passing process has most effect in the intermediate dens
This could be anticipated since in the low and high densit
the number of passing considerably reduces. The space-
diagrams of the model I reveal the discriminating effect
passing.

In model II ~both symmetric and asymmetric!, the maxi-
mum ofJ occurs in different values ofn in simulation and in
the analytical approach. The mean field predicts a shift
ward higher densities, while in simulation a slight shift t
ward the left is observed. We note that in the PCA-bas
models, the maximum ofJ corresponds to a considerab
left-shifted value of the density@16,17#. In the symmetric
version of the model II, we observe an increment of t
current with regard to the asymmetric version. In contras
the asymmetric version, the maximum ofJ in the mean-field
approach is higher than its value obtained through simu
tion. Although the current diagram~10! appears asymmetri
cally with respect to the density, the lane-changing diagr
~13! is symmetric to a high accuracy.
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@22# G. M. Schütz, in Phase Transitions and Critical Phenomen,

edited by C. Domb and J. Lebowitz~Academic Press, London
2000!.

@23# Non-Equilibrium Statistical Mechanics in One Dimension, ed-
ited by V. Privman~Cambridge University Press, Cambridg
England, 1997!.

@24# F.C. Alcaraz, M. Droz, M. Henkel, and V. Rittenberg, An
Phys.~N.Y.! 230, 250 ~1994!.

@25# V. Belitsky, J. Krug, E. Jordao, and G. M. Schut¨z, J. Stat.
Phys.~to be published!.


